Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509561

RESUMEN

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Asunto(s)
Calcio , Trastornos Mieloproliferativos , Humanos , Fura-2 , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal , Mutación , Receptores de Eritropoyetina/genética , Janus Quinasa 2/genética
2.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37310793

RESUMEN

The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.


Asunto(s)
Apoptosis , Leishmania major , Fagocitos , Leishmania major/patogenicidad , Fagocitos/parasitología , Humanos , Virulencia , Ratones Endogámicos C57BL , Células Cultivadas , Ratones , Animales
3.
Front Microbiol ; 13: 975436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329851

RESUMEN

T cells orchestrate adaptive and innate immune responses against pathogens and transformed cells. However, T cells are also the main adaptive effector cells that mediate allergic and autoimmune reactions. Within the last few years, it has become abundantly clear that activation, differentiation, effector function, and environmental adaptation of T cells is closely linked to their energy metabolism. Beyond the provision of energy equivalents, metabolic pathways in T cells generate building blocks required for clonal expansion. Furthermore, metabolic intermediates directly serve as a source for epigenetic gene regulation by histone and DNA modification mechanisms. To date, several antibiotics were demonstrated to modulate the metabolism of T cells especially by altering mitochondrial function. Here, we set out to systematically review current evidence about how beta-lactam antibiotics, macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols alter the metabolism and effector functions of CD4+ T helper cell populations and CD8+ T cells in vitro and in vivo. Based on this evidence, we have developed an overview on how the use of these antibiotics may be beneficial or detrimental in T cell-mediated physiological and pathogenic immune responses, such as allergic and autoimmune diseases, by altering the metabolism of different T cell populations.

5.
Sci Rep ; 12(1): 1943, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121767

RESUMEN

T helper (Th) cells provide immunity to pathogens but also contribute to detrimental immune responses during allergy and autoimmunity. Th2 cells mediate asthmatic airway inflammation and Th1 cells are involved in the pathogenesis of multiple sclerosis. T cell activation involves complex transcriptional networks and metabolic reprogramming, which enable proliferation and differentiation into Th1 and Th2 cells. The essential trace element zinc has reported immunomodulatory capacity and high zinc concentrations interfere with T cell function. However, how high doses of zinc affect T cell gene networks and metabolism remained so far elusive. Herein, we demonstrate by means of transcriptomic analysis that zinc aspartate (UNIZINK), a registered pharmaceutical infusion solution with high bioavailability, negatively regulates gene networks controlling DNA replication and the energy metabolism of murine CD3/CD28-activated CD4+ T cells. Specifically, in the presence of zinc, CD4+ T cells show impaired expression of cell cycle, glycolytic and tricarboxylic acid cycle genes, which functionally cumulates in reduced glycolysis, oxidative phosphorylation, metabolic fitness and viability. Moreover, high zinc concentrations impaired nuclear expression of the metabolic transcription factor MYC, prevented Th1 and Th2 differentiation in vitro and reduced Th1 autoimmune central nervous system (CNS) inflammation and Th2 asthmatic airway inflammation induced by house dust mites in vivo. Together, we find that higher zinc doses impair the metabolic fitness of CD4+ T cells and prevent Th1 CNS autoimmunity and Th2 allergy.


Asunto(s)
Ácido Aspártico/análogos & derivados , Asma/tratamiento farmacológico , Sistema Nervioso Central/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Agentes Inmunomoduladores/farmacología , Pulmón/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Neumonía/tratamiento farmacológico , Células TH1/efectos de los fármacos , Células Th2/efectos de los fármacos , Compuestos de Zinc/farmacología , Animales , Ácido Aspártico/farmacología , Asma/genética , Asma/inmunología , Asma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Metabolismo Energético/genética , Regulación de la Expresión Génica , Pulmón/inmunología , Pulmón/metabolismo , Activación de Linfocitos/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Pyroglyphidae/inmunología , Transducción de Señal , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Transcripción Genética
6.
Nature ; 562(7727): 391-395, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333576

RESUMEN

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose-Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose-Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose-Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose-Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose-Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

7.
Sci Transl Med ; 5(192): 192ra87, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825303

RESUMEN

Adoptive immunotherapy is a promising therapeutic approach for the treatment of chronic infections and cancer. T cells within a certain range of high avidity for their cognate ligand are believed to be most effective. T cell receptor (TCR) transfer experiments indicate that a major part of avidity is hardwired within the structure of the TCR. Unfortunately, rapid measurement of structural avidity of TCRs is difficult on living T cells. We developed a technology where dissociation (koff rate) of truly monomeric peptide-major histocompatibility complex (pMHC) molecules bound to surface-expressed TCRs can be monitored by real-time microscopy in a highly reliable manner. A first evaluation of this method on distinct human cytomegalovirus (CMV)-specific T cell populations revealed unexpected differences in the koff rates. CMV-specific T cells are currently being evaluated in clinical trials for efficacy in adoptive immunotherapy; therefore, determination of koff rates could guide selection of the most effective donor cells. Indeed, in two different murine infection models, we demonstrate that T cell populations with lower koff rates confer significantly better protection than populations with fast koff rates. These data indicate that koff rate measurements can improve the predictability of adoptive immunotherapy and provide diagnostic information on the in vivo quality of T cells.


Asunto(s)
Traslado Adoptivo , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Femenino , Genes MHC Clase I/genética , Humanos , Masculino , Ratones , Receptores de Antígenos de Linfocitos T/inmunología
8.
Mol Cell Biol ; 26(6): 2317-26, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16508007

RESUMEN

dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity.


Asunto(s)
Conducta Animal/fisiología , Sistema Inmunológico/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ventilación Pulmonar/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Eritrocitos/patología , Femenino , Inmunoglobulina M/sangre , Péptidos y Proteínas de Señalización Intercelular/inmunología , Yoduro Peroxidasa/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Mutantes , Tiroxina/metabolismo , Triyodotironina/metabolismo , Yodotironina Deyodinasa Tipo II
9.
J Am Soc Nephrol ; 16(12): 3592-601, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16267157

RESUMEN

MRL/MpJ-Fas(lpr)/J (MRL/lpr) mice represent a well-established mouse model of human systemic lupus erythematosus. MRL/lpr mice homozygous for the spontaneous lymphoproliferation mutation (lpr) are characterized by systemic autoimmunity, massive lymphadenopathy associated with proliferation of aberrant T cells, splenomegaly, hypergammaglobulinemia, arthritis, and fatal immune complex-mediated glomerulonephritis. It was reported previously that steady-state mRNA levels for the chemokine (C-C motif) receptor 2 (Ccr2) continuously increase in kidneys of MRL/lpr mice. For examining the role of Ccr2 for development and progression of immune complex-mediated glomerulonephritis, Ccr2-deficient mice were generated and backcrossed onto the MRL/lpr genetic background. Ccr2-deficient MRL/lpr mice developed less lymphadenopathy, had less proteinuria, had reduced lesion scores, and had less infiltration by T cells and macrophages in the glomerular and tubulointerstitial compartment. Ccr2-deficient MRL/lpr mice survived significantly longer than MRL/lpr wild-type mice despite similar levels of circulating immunoglobulins and comparable immune complex depositions in the glomeruli of both groups. Anti-dsDNA antibody levels, however, were reduced in the absence of Ccr2. The frequency of CD8+ T cells in peripheral blood was significantly lower in Ccr2-deficient MRL/lpr mice. Thus Ccr2 deficiency influenced not only monocyte/macrophage and T cell infiltration in the kidney but also the systemic T cell response in MRL/lpr mice. These data suggest an important role for Ccr2 both in the general development of autoimmunity and in the renal involvement of the lupus-like disease. These results identify Ccr2 as an additional possible target for the treatment of lupus nephritis.


Asunto(s)
Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Receptores de Quimiocina/deficiencia , Animales , Biopsia con Aguja , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Directa , Inmunohistoquímica , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Nefritis Lúpica/mortalidad , Ratones , Ratones Endogámicos MRL lpr , Receptores de Quimiocina/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Riesgo , Sensibilidad y Especificidad , Tasa de Supervivencia
10.
Infect Immun ; 73(9): 5952-60, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16113316

RESUMEN

It is well documented that sex-dependent factors affect susceptibility to infection, with most mouse models demonstrating higher resistance in females. We made the unexpected observation that infection with the intracellular bacterium Listeria monocytogenes showed an opposite pattern in several commonly used inbred mouse strains: female C57BL/6J, BALB/c, C3H/HeN, and CBA/J mice were significantly more susceptible to Listeria infection. The pronounced sensitivity of females to Listeria, which was revealed by significantly higher lethality rates, correlated also with increased bacterial numbers in organ tissues (spleen and liver) and several immunological changes in peripheral blood samples. Surprisingly, increased severity of infection in females was associated with elevated interleukin-10 (IL-10) levels in plasma. Experiments using Il10 knockout mice, for which no differences between the susceptibilities of males and females to Listeria infection could be detected, confirmed the important role of this immunosuppressive cytokine for the outcome of disease. Our findings are likely to have clinical relevance, since similar sex differences with regard to infection with Listeria monocytogenes and other intracellular pathogens have been reported for humans.


Asunto(s)
Predisposición Genética a la Enfermedad , Interleucina-10/biosíntesis , Listeriosis/inmunología , Listeriosis/fisiopatología , Caracteres Sexuales , Animales , Femenino , Interleucina-10/deficiencia , Interleucina-10/genética , Listeria monocytogenes/inmunología , Listeriosis/mortalidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados
11.
Proc Natl Acad Sci U S A ; 102(33): 11805-10, 2005 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16091471

RESUMEN

The activating receptor NKG2D recognizes a wide range of different ligands, some of which are primarily expressed in "stressed" tissues or on tumor cells. Until now, similar stimulatory effects on natural killer and CD8+ T cells have been described for all NKG2D ligands, and the NKG2D receptor/ligand system has therefore been interpreted as a sensor system involved in tumor immune surveillance and activation of immune responses. We show here that the NKG2D ligands H60 and MIC class 1 chain-related protein A (MICA) can also mediate strong suppressive effects on T cell proliferation. Responsiveness to H60- and MICA-mediated suppression requires IL-10 and involves a receptor other than NKG2D. These findings might provide explanations for the observation that strong in vivo NKG2D ligand expression, such as that on tumor cells, sometimes fails to support effective immune responses and links this observation to a distinct subgroup of NKG2D ligands.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores Inmunológicos/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Línea Celular , Proliferación Celular , Interleucina-10/metabolismo , Ligandos , Ratones , Ratones Noqueados , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptores de Células Asesinas Naturales
13.
Nat Med ; 8(6): 631-7, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12042816

RESUMEN

Recently developed major histocompatibility complex (MHC) multimer technologies allow visualization and isolation of antigen-specific T cells. However, functional analysis and in vivo transfer of MHC multimer-stained cells is hampered by the persistence of T-cell receptor (TCR) MHC interactions and subsequently induced signaling events. As MHC monomers do not stably bind to TCRs, we postulated that targeted disassembly of multimers into MHC monomers would result in dissociation of surface-bound TCR ligands. We generated a new type of MHC multimers, which can be monomerized in the presence of a competitor, resulting in rapid loss of the staining reagent. Following dissociation, the T cells are phenotypically and functionally indistinguishable from untreated cells. This 'reversible' T-cell staining procedure, which maintains the specificity and sensitivity of MHC multimer staining while preserving the functional status of T lymphocytes, may be of broad benefit for ex vivo investigation of T-cell functions and clinical applications.


Asunto(s)
Traslado Adoptivo , Antígenos de Histocompatibilidad/inmunología , Complejo Mayor de Histocompatibilidad , Linfocitos T/inmunología , Animales , Separación Celular/métodos , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos BALB C , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/clasificación , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...